Sorting, Searching, \& Aligning Michael Schatz

QB/Bioinformatics Lecture I
Quantitative Biology 2014

Cells \& DNA

Each cell of your body contains an exact copy of your 3 billion base pair genome.

Your specific nucleotide sequence encodes the genetic program for your cells and ultimately your traits

Short Read Applications

- Genotyping: Identify Variations

- *-seq: Classify \& measure significant peaks

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
G	A	T	T	A	C	A									

No match at offset I

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
	G	A	T	T	A	C	A								

Match at offset 2

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
		G	A	T	T	A	C	A	\ldots						

No match at offset $3 \ldots$

Searching for GATTACA

- Where is GATTACA in the human genome?
- Strategy I: Brute Force

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	...
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
								G	A	T	T	A	C	A	

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

- Brute Force:
- At every possible offset in the genome:
- Do all of the characters of the query match?
- Analysis
- Simple, easy to understand
- Genome length = n
- Query length =m
- Comparisons: $(\mathrm{n}-\mathrm{m}+\mathrm{I}) * \mathrm{~m}$
- Overall runtime: $O(n m)$
[How long would it take if we double the genome size, read length?] [How long would it take if we double both?]

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a genome depends on the length of the genome and inversely on the length of the sequence

- I in 4 bases are G, I in $I 6$ positions are $G A, I$ in 64 positions are GAT, ...
- I in 16,384 should be GATTACA
- $\mathrm{E}=\mathrm{n} /\left(4^{\mathrm{m}}\right)$ [183,105 expected occurrences]
[How long do the reads need to be for a significant match?]

Brute Force Reflections

Why check every position?

- GATTACA can't possibly start at position I5
[WHY?]

I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	\ldots
T	G	A	T	T	A	C	A	G	A	T	T	A	C	C	\ldots
								G	A	T	T	A	C	A	

- Improve runtime to $\mathrm{O}(\mathrm{n}+\mathrm{m})$
[3B + 7]
- If we double both, it just takes twice as long
- Knuth-Morris-Pratt, 1977
- Boyer-Moyer, I977, I99I
- For one-off scans, this is the best we can do (optimal performance)
- We have to read every character of the genome, and every character of the query
- For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

- What if we need to check many queries?
- We don't need to check every page of the phone book to find 'Schatz'
- Sorting alphabetically lets us immediately skip $96 \%(25 / 26)$ of the book without any loss in accuracy
- Sorting the genome: Suffix Array (Manber \& Myers, 1991)
- Sort every suffix of the genome

Split into n suffixes

Sort suffixes alphabetically
[Challenge Question: How else could we split the genome?]

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo = I; Hi = I5;

$\xrightarrow{\text { Lo }}$	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC...	3
	5	ATTACC...	10
	6	C...	15
	7	CAGATTACC...	7
	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC...	5
	12	TACC...	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
$\xrightarrow{\mathrm{Hi}}$	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo $=1 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(1+15) / 2=8$
- Middle $=$ Suffix[8] = CC

Lo	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC...	3
	5	ATTACC...	10
	6	C...	15
	7	CAGATTACC...	7
	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	tacagattacc...	5
	12	TACC...	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
$\xrightarrow{\mathrm{Hi}}$	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo $=1 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(1+15) / 2=8$
- Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I

Lo	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATtACAGATTACC...	3
	5	ATTACC...	10
	6	C...	15
	7	CAGATTACC.	7
	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	tacagattacc...	5
	12	TACC...	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
$\xrightarrow{\mathrm{Hi}}$	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- Lo $=1 ; \mathrm{Hi}=15 ; \operatorname{Mid}=(I+I 5) / 2=8$
- \quad Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I
- \quad Lo $=9 ; \mathrm{Hi}=\mathrm{I} 5$;

	\#	Sequence	Pos
	I	ACAGATTACC.	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC...	3
	5	ATTACC...	10
	6	C...	15
	7	CAGATTACC.	7
$\xrightarrow{\text { Lo }}$	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC...	5
	12	TACC...	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
$\xrightarrow{\mathrm{Hi}}$	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- Middle = Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- \quad Middle $=$ Suffix[I2] = TACC

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- \quad Middle $=$ Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- Middle $=$ Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II}$;

\#	Sequence	Pos
1	ACAGATTACC...	6
2	ACC...	13
3	AGATTACC...	8
4	ATTACAGATTACC...	3
5	ATTACC...	10
6	C.	15
7	CAGATTACC.	7
8	CC...	14
9	GATTACAGATTACC...	2
10	GATTACC...	9
11	TACAGATTACC...	5
12	TACC...	12
13	TGATTACAGATTACC..	I
14	TTACAGATTACC...	4
15	TTACC.	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- \quad Middle $=$ Suffix $[8]=$ CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- Middle = Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- Middle = Suffix[I0] = GATTACC

	\#	Sequence	Pos
	I	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC.	3
	5	ATTACC.	10
	6	C...	15
	7	CAGATTACC...	7
Lo	8	CC...	14
	9	GATtACAGATTACC...	2
	10	GATTACC...	9
$\xrightarrow{\mathrm{Hi}}$	11	TACAGATTACC...	5
	12	TACC.	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
	15	TTACC.	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=15 ; \mathrm{Mid}=(1+15) / 2=8$
- Middle = Suffix[8] = CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(9+\mid 5) / 2=12$
- Middle = Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- Middle = Suffix[I0] = GATTACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=9$;

	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC.	8
	4	ATTACAGATTACC.	3
	5	ATTACC.	10
	6	C.	15
	7	CAGATTACC...	7
$\begin{aligned} & \text { Lo } \\ & \mathrm{HI} \end{aligned}$	8	CC..	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC..	5
	12	TACC.	12
	13	TGATTACAGATTACC...	I
	14	TTACAGATTACC..	4
	15	TTACC...	11

Searching the Index

- Strategy 2: Binary search
- Compare to the middle, refine as higher or lower
- Searching for GATTACA
- $\mathrm{Lo}=\mathrm{I} ; \mathrm{Hi}=\mathrm{I} 5 ; \mathrm{Mid}=(\mathrm{I}+\mathrm{I} 5) / 2=8$
- \quad Middle $=$ Suffix $[8]=$ CC
=> Higher: Lo = Mid + I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=15 ; \mathrm{Mid}=(9+15) / 2=\mathrm{I} 2$
- Middle $=$ Suffix[I2] = TACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=\mathrm{II} ; \mathrm{Mid}=(9+\mathrm{II}) / 2=10$
- \quad Middle $=$ Suffix[I0] = GATTACC
=> Lower: Hi = Mid - I
- $\mathrm{Lo}=9 ; \mathrm{Hi}=9 ; \mathrm{Mid}=(9+9) / 2=9$
- Middle = Suffix[9] = GATTACA...
=> Match at position 2 !

$\begin{aligned} & \text { Lo } \\ & \underset{\Rightarrow}{\mathrm{HI}} \end{aligned}$	\#	Sequence	Pos
	1	ACAGATTACC...	6
	2	ACC...	13
	3	AGATTACC...	8
	4	ATTACAGATTACC.	3
	5	ATTACC.	10
	6	C...	15
	7	CAGATTACC...	7
	8	CC...	14
	9	GATTACAGATTACC...	2
	10	GATTACC...	9
	11	TACAGATTACC...	5
	12	TACC.	12
	13	TGATTACAGATTACC...	1
	14	TTACAGATTACC...	4
	15	TTACC.	11

Binary Search Analysis

- Binary Search

Initialize search range to entire list mid $=(\mathrm{hi}+\mathrm{lo}) / 2$; middle $=$ suffix[mid] if query matches middle: done else if query < middle: pick low range else if query > middle: pick hi range
Repeat until done or empty range

- Analysis
- More complicated method
- How many times do we repeat?
- How many times can it cut the range in half?
- Find smallest x such that: $n /\left(2^{x}\right) \leq 1 ; x=\lg _{2}(n)$
- Total Runtime: $O(m \lg n)$
- More complicated, but much faster!
- Looking up a query loops 32 times instead of 3B
[How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction

- How can we store the suffix array?
[How many characters are in all suffixes combined?]

- Hopeless to explicitly store 4.5 billion billion characters
- Instead use implicit representation
- Keep I copy of the genome, and a list of sorted offsets
- Storing 3 billion offsets fits on a server (I2GB)
- Searching the array is very fast, but it takes time to construct
- This time will be amortized over many, many searches
- Run it once "overnight" and save it away for all future queries

Sorting

Quickly sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
[How do you do it?]

```
6, I4, 29, 3I, 39, 64, 78, 50, I3, 63, 6I, I9
6, I3, I4, 29, 3I, 39, 64, 78, 50, 63, 6I, I9
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, I4, I9, 29, 3I, 39, 64, 78, 50, 63, 6I
6, I3, I4, I9, 29, 3I, 39, 50, 64, 78, 63, 6|
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 64, 78, 63
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 63, 64, 78
6, I3, I4, I9, 29, 3I, 39, 50, 6|, 63, 64,78
6, I3, I4, I9, 29, 3I, 39, 50, 6I, 63, 64,78
6, I3, I4, I9, 29, 3I, 39, 50, 6|, 63, 64,78
6, I3, I4, I9, 29, 3|, 39, 50, 6|, 63, 64,78
```


http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

- Selection Sort (Input: list of n numbers)

```
for pos = I to n
    // find the smallest element in [pos, n]
    smallest = pos
    for check = pos+l to n
        if (list[check] < list[smallest]): smallest = check
```

// move the smallest element to the front
tmp $=$ list[smallest]
list[pos] = list[smallest]
list[smallest] = tmp

- Analysis

$$
T=n+(n-1)+(n-2)+\cdots+3+2+1=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

- Outer loop: pos $=I$ to n
- Inner loop: check = pos to n
- Running time: Outer * Inner $=\mathrm{O}\left(\mathrm{n}^{2}\right)$
[4.5 Billion Billion]
[Challenge Questions: Why is this slow? / Can we sort any faster?]

Divide and Conquer

- Selection sort is slow because it rescans the entire list for each element
- How can we split up the unsorted list into independent ranges?
- Hint I: Binary search splits up the problem into 2 independent ranges (hi/lo)
- Hint 2: Assume we know the median value of a list

[How many times can we split a list in half?]

QuickSort Analysis

- QuickSort(Input: list of n numbers)
// see if we can quit
if (length(list)) <= I): return list
// split list into lo \& hi
pivot $=$ median(list)
lo $=\{ \} ;$ hi $=\{ \} ;$
for ($\mathrm{i}=\mathrm{I}$ to length(list))
if (list[i] < pivot): append(lo, list[i])
else:
append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort
// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))
- Analysis (Assume we can find the median in $\mathrm{O}(\mathrm{n})$)

$$
\begin{align*}
& T(n)= \begin{cases}O(1) & \text { if } n \leq 1 \\
O(n)+2 T(n / 2) & \text { else }\end{cases} \\
& T(n)=n+2\left(\frac{n}{2}\right)+4\left(\frac{n}{4}\right)+\cdots+n\left(\frac{n}{n}\right)=\sum_{i=0}^{\lg (n)} \frac{2^{i} n}{2^{i}}=\sum_{i=0}^{\lg (n)} n=O(n \lg n) \tag{~94B}
\end{align*}
$$

QuickSort Analysis

- QuickSort(Input: list of n numbers)
// see if we can quit
if (length(list)) <= I): return list
// split list into lo \& hi
pivot $=$ median(list)
lo $=\{ \} ;$ hi $=\{ \} ;$
for ($\mathrm{i}=\mathrm{I}$ to length(list))
if (list[i] < pivot): append(lo, list[i])
else:
append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort
// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))
- Analysis (Assume we can find the median in $\mathrm{O}(\mathrm{n})$)

$$
\begin{align*}
& T(n)= \begin{cases}O(1) & \text { if } n \leq 1 \\
O(n)+2 T(n / 2) & \text { else }\end{cases} \\
& T(n)=n+2\left(\frac{n}{2}\right)+4\left(\frac{n}{4}\right)+\cdots+n\left(\frac{n}{n}\right)=\sum_{i=0}^{\lg (n)} \frac{2^{i} n}{2^{i}}=\sum_{i=0}^{\lg (n)} n=O(n \lg n) \tag{~94B}
\end{align*}
$$

QuickSort in Python

list.sort()

- The goal of software engineering is to build libraries of correct reusable functions that implement higher level ideas
- Build complex software out of simple components
- Software tends to be 90% plumbing, 10% research
- You still need to know how they work
- Python requires an explicit representation of the strings

Algorithmic Complexity

What is the runtime as a function of the input size?

THE G-NOME PROJECT

Break

Algorithmic challenge

How can we combine the speed of a suffix array $(\mathrm{O}(\lg (\mathrm{n}))$ or $\mathrm{O}(|q|))$ with the size of a brute force analysis (n bytes)?

What would such an index look like?

Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Burrows-Wheeler Transform

- Reversible permutation of the characters in a text

- $\operatorname{BWT}(\mathrm{T})$ is the index for T

A block sorting lossless data compression algorithm.
Burrows M,Wheeler DJ (1994) Digital Equipment Corporation. Technical Report I24

Burrows-Wheeler Transform

- Recreating T from BWT(T)
- Start in the first row and apply LF repeatedly, accumulating predecessors along the way

[Decode this BWT string: ACTGA\$TTA]

BWT Exact Matching

- $\operatorname{LFc}(r, c)$ does the same thing as LF(r) but it ignores r ' s actual final character and "pretends" it's c:

$$
\operatorname{LFc}(5, g)=8
$$

\$acaacg
atcg\$ac
acaacg \$
acg \$aca

Rank: 2 g acoaac

BWT Exact Matching

- Start with a range, (top, bot) encompassing all rows and repeatedly apply LFc: top $=\operatorname{LFc}($ top, qc); bot $=\operatorname{LFc}($ bot, qc) $\mathrm{qc}=$ the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

Algorithm Overview

1. Split read into segments
```
Read
Read (reverse complement)
CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG
```

Policy: extract 16 nt seed every 10 nt
Seeds

```
+, 0: CCAGTAGCTCTCAGCC
,0: TACAGGCCTGGGTAAA
+,10: TCAGCCTTATTTTACC -, 10: GGTANAATAAGGCTGA
+20: TTTACCCAGGCCTGTA
                                    ,20: GGCTGAGAGCTACTGG
```

2. Lookup each segment and prioritize

Seeds

+ , 0: CCAGTAGCTCTCAGCC
+, 10: TCAGCCTTATTTTACC
+ , 20: TTTACCCAGGCCTGTA
- 0: TACAGGCCTGGGTAAA
- 10: GGTAAAATAAGGCTGA
-, 20: GGCTGAGAGCTACTGG

3. Evaluate end-to-end match

Ext	SIMD dynamic programming aligner	SAM alignments			
SA:684, chr12:1955		r1	$\begin{array}{ll} 0 & \text { chr12 } \\ 36 M & * \end{array}$	$\begin{array}{ll} 2 & 1936 \\ 0 & 0 \end{array}$	0
SA:624, chr2:462 \rightarrow		\rightarrow	CCAGTAGCTC IIIIIIIIII	CTCAGCCTT IIIIIIIII	ATTTTACCCAGGCCTGTA IIIIIIIIIIIIIIIIII
SA:211: chr $4: 762$			AS:i:0 ${ }^{\text {a }}$	XS:i:-2	XN:i:0
SA:213: chr12:1935			XM:i NM:i:0 M	$\begin{aligned} & \text { X0:i:0 } \\ & \text { MD:z:36 } \end{aligned}$	XG:i:0 YT:Z:UU
SA: 652: chr12:1945	+10		YM:i:0		

Algorithms Summary

- Algorithms choreograph the dance of data inside the machine
- Algorithms add provable precision to your method
- A smarter algorithm can solve the same problem with much less work
- Sequences are really fundamental to biology, learn the techniques to analyze them
- Techniques
- Binary search: Fast lookup in any sorted list
- Divide-and-conquer: Split a hard problem into an easier problem
- Recursion: Solve a problem using a function of itself
- Hashing: Storing sets across a huge range of values
- Indexing: Focus on the search on the important parts
- Different indexing schemes have different space/time features

Next Time

- Friday:
- HW Review
- Group Discussion of ENCODE
- Monday:
- Dynamic Programming \& Alignment applications
- Tuesday:
- Graphs \& Assembly
- Thursday:
- Diversity of modern and ancient humans
- Friday:
- Gene Finding + ChromHMM + Review

Thank You!

http://schatzlab.cshl.edu
@mike_schatz

Picking the Median

- What if we miss the median and do a $90 / 10$ split instead?

\square $\ldots+9^{i n} / 10^{i}$
[How many times can we cut 10% off a list?]

Randomized Quicksort

- $90 / 10$ split runtime analysis
$T(n)=n+T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)$
Find smallest x s.t.

$$
\begin{aligned}
& T(n)=n+\frac{n}{10}+T\left(\frac{n}{100}\right)+T\left(\frac{9 n}{100}\right)+\frac{9 n}{10}+T\left(\frac{9 n}{100}\right)+T\left(\frac{81 n}{100}\right) \\
& T(n)=n+n+T\left(\frac{n}{100}\right)+2 T\left(\frac{9 n}{100}\right)+T\left(\frac{81 n}{100}\right) \\
& T(n)=\sum_{i=0}^{\log _{10 / 9}(n)} n=O(n \lg n)
\end{aligned}
$$

- If we randomly pick a pivot, we will get at least a 90/I0 split with very high probability
- Everything is okay as long as we always slice off a fraction of the list
[Challenge Question:What happens if we slice I element]

